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ABSTRACT The dynamics of biological reaction networks are strongly constrained by thermodynamics. An holistic under-
standing of their behavior and regulation requires mathematical models that observe these constraints. However, kinetic models
may easily violate the constraints imposed by the principle of detailed balance, if no special care is taken. Detailed balance demands
that in thermodynamic equilibrium all fluxes vanish. We introduce a thermodynamic-kinetic modeling (TKM) formalism that adapts
the concepts of potentials and forces from irreversible thermodynamics to kineticmodeling. In the proposed formalism, the thermo-
kinetic potential of a compound is proportional to its concentration. The proportionality factor is a compound-specific parameter
called capacity. The thermokinetic forceof a reaction is a functionof thepotentials. Every reactionhasa resistance that is the ratio of
thermokinetic force and reaction rate. For mass-action type kinetics, the resistances are constant. Since it relies on the thermo-
dynamic concept of potentials and forces, the TKM formalism structurally observes detailed balance for all values of capacities and
resistances. Thus, it provides aneasyway to formulate physically feasible, kineticmodels of biological reaction networks. TheTKM
formalism is useful for modeling large biological networks that are subject to many detailed balance relations.

INTRODUCTION

Mathematical models and computer simulations are helpful
tools to copewith the increasingly complex reaction networks
studied in biology (1). A popular and powerful modeling
approach is deterministic kinetic modeling that leads to
ordinary differential equation systems (2). The behavior
of reaction systems is strongly determined by structural
constraints on mass and energy flow that follow from the
stoichiometry of the system. The mass consumed by a
reaction has to be equal to the mass produced. For an isobaric
and isothermal reaction to proceed in the forward direction,
theGibbs energy consumed has to be larger than the produced
Gibbs energy. It was shown that key aspects of functionality
and regulation of metabolic networks can be understood
solely in terms of these constraints (3). Since stoichiometry of
most networks is known much better than kinetic rate laws,
observation of these constraints is crucial for building useful
models. Whereas the constraints concerning mass flow are
easily captured in mass balance equations, the correct model-
ing of energy flow in kinetic models requires the observance
of certain constraints on the parameters. Those follow from
the second law of thermodynamics and the principle of
detailed balance. The second law postulates that a system that
is not exposed to external thermodynamic forces will reach a
state called thermodynamic equilibrium. For isobaric and
isothermal systems (e.g., cells), thermodynamic equilibrium
is characterized by a minimum of Gibbs free energy. Detailed
balance is also called microscopic reversibility, because it
demands that in thermodynamic equilibrium the probability
of a microscopic process is equal to the probability of its
reverse process, i.e., in thermodynamic equilibrium the

forward rate of a reaction is equal to the backward rate, and
thus its overall flux is zero.
Microscopic reversibility restricts the set of physically

possible parameter values of thermodynamic systems. For
systems near equilibrium, this was discussed in 1931 by
Onsager (4,5). Near equilibrium, the constraints have the form
of symmetry conditions on phenomenological parameters of
the linearized equations. Constraints on stationary, far-from-
equilibrium flux distributions of reaction networks were
recently discussed in the literature (6–12). The constraints can
be written as sign conditions on stationary fluxes. These pub-
lications also contain good introductions to the treatment
of nonequilibrium reaction systems in thermodynamics. A
review concerning detailed balance in dynamic, kinetic
modeling can be found in Heinrich and Schuster (13). In the
literature (14,15) detailed balancing is discussed in the frame-
work of a formal, mathematical representation of general
kinetic systems. Recently, the problem of how to impose
detailed balance in complex reaction mechanisms was dis-
cussed in two articles (16,17). The former proposes a method
based on explicit identification of stoichiometric cycles. The
latter relies on the framework of generalized kinetic systems
(14) and presents a parameterization of the model in terms of
equilibrium concentrations and fluxes.
Here, we attack the problem of imposing detailed balance

in kinetic models from a thermodynamic point of view. We
confirm and extend the results of Yang et al. (17) and give an
intuitive thermodynamic interpretation.
As the following example shows, kinetic models containing

true cycles may easily describe systems that violate micro-
scopic reversibility, if no special care is taken. We consider a
reaction network describing the random-order complexation of
three compounds A, B, and C:
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A1B !1 AB AB1C !2 ABC

B1C !3 BC A1BC !4 ABC : (1)

Because the order of complexation is arbitrary, the system
contains a cycle:

A1B1C !1 AB1C

]X3 ]X2

A1BC !4 ABC : (2)

Assuming a homogeneous phase of constant volume, the
mole balances read

_cA ¼ "J1 " J4 _cAB ¼ 1 J1 " J2

_cB ¼ "J1 " J3 _cBC ¼ 1 J3 " J4

_cC ¼ "J2 " J3 _cABC ¼ 1 J2 1 J4 : (3)

Here ci [mol m"3] and Jj [mol m"3 s"1] denote concen-
trations and fluxes, respectively.We assume that the reactions
obey a mass-action law with kinetic parameters k6j:

J1 ¼ k11cAcB "k"1cAB

J2 ¼ k12cABcC "k"2cABC

J3 ¼ k13cBcC "k"3cBC

J4 ¼ k14cAcBC "k"4cABC : (4)

The second law and detailed balance demand that thermo-
dynamic equilibrium with J1,eq ¼ J2,eq ¼ J3,eq ¼ J4,eq ¼ 0
exists. With ci,eq denoting the equilibrium concentrations this
leads to the condition that the product of the equilibrium
constants along the cycle has to be one:

cAB;eq
cA;eqcB;eq

cABC;eq
cAB;eqcC;eq

cBC;eqcA;eq
cABC;eq

cB;eqcC;eq
cBC;eq

¼

k11

k"1

k12

k"2

k"4

k14

k"3

k13

¼ 1 : (5)

The above equation for the parameters is called detailed
balance relation orWegscheider condition. For all other param-
eter combinations the model describes a physically impossible
system with a non-zero steady-state flux and thus a permanent
deviation of the concentrations from the equilibrium ratios.
The deviation could be used by an attached system to per-

form work; i.e., energy-rich products could be formed from
energy-poor precursors without consumption of energy-rich
substrates. Thus the model appears as a chemical perpetuum-
mobile, which can produce chemical energy. In this sense, a
model violating the Wegscheider conditions may be inter-
preted as a system violating energy conservation (18).
The argumentation above is based on the existence of

thermodynamic equilibrium, but is not limited to systems that
actually reach thermodynamic equilibrium. The crucial point
is, that a systemwill reach thermodynamic equilibrium, if it is
isolated from its surroundings (all boundary fluxes zero). In
biological terms this means that the system will die, if feeding
stops.
Determination of detailed balance relations requires the

consideration of the complete stoichiometry. Many models
use a simplified stoichiometry, where the balance equations of

certain compounds are omitted and their concentrations
are assumed to be constant. This is done often with the ubiq-
uitous metabolites adenosine triphosphate (ATP), adenosine
diphosphate (ADP), and inorganic phosphate (P). Their
concentrations are assumed to be tightly regulated and usually
only a small part of all reactions transforming ATP, ADP, and
P are modeled. The simplified stoichiometry cannot be used
for deriving detailed balance relations. We will illustrate this
by means of our example network (Eq. 1). Assume that the
stoichiometry of reaction 1 was not complete, but that it
includes the cleavage of energy-rich ATP into its energy-poor
constituents ADP and P. The true stoichiometry of reaction
1 is A1B1ATP!AB1ADP1P. Because the concentrations
of ATP, ADP, and P are assumed to be constant, the form of
the rate laws in Eq. 4 needs not to be changed, if k61 values are
allowed to depend on the concentrations of ATP, ADP, and P.
By clamping these concentrations, an external thermody-
namic force is imposed upon the system, preventing it from
going to thermodynamic equilibrium, and driving a cyclic
flux. Such cycles are called futile cycles, since they are driven
by a permanent inflow of energy-rich (ATP) and outflow of
energy-poor (ADP, P) compounds. In steady state the energy
dissipated by the cycle is equal to the amount of work
needed to keep ATP, ADP, and P concentrations constant by
rephosphorylating the produced ADP. The argument used to
derive the detailed balance relations in Eq. 5 of the original
network is not valid here, because it is based on the assump-
tion that thermodynamic equilibrium is reached. This shows
that detailed balance relations can only be formulated for
true cycles but not for futile cycles. When working with a
simplified stoichiometry one cannot derive detailed balance
relations, since it is impossible to decide if a certain cycle is a
true cycle or a futile cycle. For this reason, wewill assume that
in the following the considered network stoichiometries are
complete.
Whenever a system contains true cycles and its parameters

are not known completely and accurately, detailed balance
relations have implications on modeling and model analysis.
Their explicit consideration can simplify parameter estima-
tion from experimental data, because they lower the number
of independent parameters. However, they put constraints on
the usual praxis of adopting parameters from other models of
similar systems. This can be illustrated with a series of models
of epidermal growth factor (EGF) signaling in mammalian
cells. During EGF signal transduction phosphorylated Shc,
Grb2, and Sos form a complex as A, B, and C in the above
example. This subnetwork is embedded in a larger network
that contains many phosphorylations and dephosphorylations
(especially of Shc andSos).However, the stoichiometry of the
complexation cycle is complete, because none of the reactions
requires the cleavage of ATP. In Kholodenko et al. (19), a
model of EGF signaling is presented that explicitly acknowl-
edges detailed balance relations and adjusts the parameter
values accordingly. The model presented in Schoeberl et al.
(20) adopts some of the parameters from Kholodenko et al.
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(19) but changes others without observance of detailed
balance. Finally Liu et al. (21) analyzes the model of (20) but
again changes a few parameters without consideration of
detailed balance. Consequently the latter two models are
thermodynamically infeasible and a cyclic flux can occur. A
more detailed analysis would be necessary to check whether
this inconsistency has a major effect on the model behavior or
if its effect is negligible.
In Schoeberl et al. (20) as well as Liu et al. (21) a sensitivity

analysis was performed, i.e., changes in system behavior
induced by small changes in each single parameter are studied.
However, because the parameters are not independent from
each other, sensitivity analysis may yield misleading results,
because impossible parameter variations are also considered.A
more detailed analysis would also be necessary here, to judge
the consequences.
A problematic aspect of the model in Eqs. 3 and 4 is that it

does not formally consider the driving forces of the reactions.
Model equations for electrical and mechanical systems
explicitly contain voltages and forces, which are physical
quantities driving electrical current and momentum changes,
respectively; that is, fluxes and conjugated forces point in the
same direction. In the case that no external forces are imposed
to the system this guarantees the existence of an equilibrium
state where all forces and fluxes are zero. Thus the fulfillment
of the second law and of detailed balance is ensured by the
model structure and it is not necessary to observe special
detailed balance equations for the parameters. In this view
model equations that violate detailed balance are comparable
to the picture ‘‘Waterfall’’ by the graphic artistM.C. Escher. It
shows a cyclic self-sustained water flow driving a water
wheel. This is physically impossible, because water always
flows from higher to lower levels; i.e., absolute water levels
may serve as potentials for water flow. Graphical represen-
tation of a cyclic water flow is possible, because the mapping
of a point in the drawing plane to a point in space is not unique
and so it is possible to interpret the drawn water surfaces
differently. The beholder chooses one of the possible inter-
pretations of a certain surface depending on its local context in
the picture. The illusion is based on the fact that every small
part of the picture shows a realistic situation with a water flow
from higher to lower potentials. Nevertheless as a whole it
shows an impossible situation, violating energy conservation.
To structurally avoid such situations, models have to

explicitly contain the potentials and driving forces. But as we
will see, the quantities usually considered as potentials and
driving forces of a reaction system—chemical potentials and
negativeGibbs reaction energies—are quite unsuited for kinetic
modeling far from equilibrium. Here, we suggest an equivalent
alternative driving force that simplifies the model equations.
A holistic understanding of large biochemical networks

requires models that describe the functioning of the system
under the constraints of mass and energy conservation. Both
classes of constraints are determined by the complete
stoichiometry of the network. Kinetic modeling structurally

accounts for the constraints of mass conservation in the mole
balance equations, but can violate energy conservation, if the
detailed balance relations are not fulfilled. This situation is
unsatisfactory. In the following we will introduce a formal-
ism that is similar to traditional kinetic modeling but struc-
turally forbids models that violate energy conservation. The
formalism is useful for modeling large reaction networks
with many interconnected stoichiometric cycles. We suggest
the term ‘‘thermodynamic-kinetic modeling’’ (TKM) for the
proposed formalism.

METHODS

Kinetic modeling

Kinetic models can be written as

_c ¼ N Jðc; kÞ; (6)

where c2Rn, J2Rm, and k2Rl are the vectors of concentrations, fluxes, and
parameters, respectively. N 2 Rn3m is the stoichiometric matrix. The kinetic

properties of the reactions are modeled by the dependency of fluxes J on

concentrations c and parameters k. The detailed balance relations that hold in
such a system can bewritten asBT log(Keq)¼ 0, where log(Keq)2Rm denotes
the vector of the logarithms of the equilibrium constants. The columns of the

matrixB 2 Rm3dm span the dm-dimensional right null space ofN, i.e.,NB¼ 0.

Thus there exist dm ¼ m – rank (N) independent detailed balance conditions

that restrict the possible values of the equilibrium constants Keq,j of the
reactions. These relations are referred to as the ‘‘generalized Wegscheider

condition’’. For their derivation, see Heinrich and Schuster (13).

Assumptions

In the following we assume that the kinetic rate equations can be described

by ideal mass-action rate laws with constant coefficients as in Eq. 4. Later we

will relax this assumption and discuss systems of generalized mass-action
rate laws. The use of mass-action kinetics implies two thermodynamic

assumptions that are discussed in the following:

1. In mass-action networks with constant coefficients (k1j, k–j), the equi-

librium constants (k1j/k–j) are, in fact, constant. In nonideal mixtures,

equilibrium ‘‘constants’’ are not constant, but depend on the composition

of the phase. To exclude such cases, we have to assume that the mixture is
ideal.

2. In general, irreversible processes can influence each other. An example

for this phenomenon is the thermoelectric effect, i.e., a temperature
gradient drives an electrical current and an electrical voltage drives a

heat flow (4,5). A similar effect may occur between two reactions. This

means that the driving force of reaction 1 may drive reaction 2 and vice

versa. Here however we assume that the reactions are thermodynam-
ically independent and thus a reaction is only driven by its conjugated

force. This is usually fulfilled if we consider elementary reactions.

We apply an additional assumption that simplifies the further consider-

ations:

3. We assume a homogeneous phase with constant temperature T, pressure
p, volume V, and molar density cS [mol m"3]. The molar density is the

sum of the concentrations of all species in a phase. It is approximatively
constant if we assume a high fraction of inert components. In this case,

the sum of the concentrations of the reactive species ci is much smaller

than the molar density: +ici % cS. The main component of biological

reaction systems is usually water. It participates in many biochemical
reactions, but their rates are low compared to water concentration. For
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this reason, the condition cS & const is usually fulfilled in biological

reaction networks.

Kinetic and thermodynamics of a reaction

We consider a reaction with educts E, products P, and stoichiometric
coefficients ni:

+
i2E

jnijXi ! +
i2P

jnijXi: (7)

The reaction rate follows a mass-action law

J ¼ k1

Y

i2E

cjni ji " k"
Y

i2P

cjniji (8)

with constant coefficients k1 and k–. As can be derived from the fundamental

equations of thermodynamics and the mole balances, the density of entropy

production s[S] [J K"1 m"3 s"1] of a reaction is given by T s[S] ¼ Dm J,
where J [mol m"3 s"1] is the reaction flux, T [K] the thermodynamic
temperature and Dm [J mol"1] is the negative Gibbs reaction energy

Dm ¼ +
i2E

jnijmi " +
i2P

jnijmi; (9)

which is a linear combination of the chemical potentials mi. E.g., for reaction
1 in Eq. 1: Dm1 ¼ mA 1 mB – mAB.

For ideal mixtures, the chemical potentials mi are given by

mi ¼ mi;0ðT; pÞ1R'T logðci=cSÞ; (10)

with the chemical standard potential mi,0 of pure Xi, and R* the universal

gas constant. So, the Gibbs reaction energy of reaction 1 is Dm1 ¼ mA;01
mB;0 " mAB;01R'T logðcAcBc"1

ABc
"1
S Þ.

Because we assumed thermodynamic independence of the reactions, the

entropy production density s[S] of each single reaction is necessarily

positive or zero. This means that a reaction can only proceed if the Gibbs
energy of its products is smaller than the Gibbs energy of the educts. Thus

for every reaction it holds that sign Dm ¼ sign J. This condition assures

observance of the second law (s[S] $ 0) and detailed balance (Jeq ¼ 0 for

equilibrium with Dmeq ¼ 0). In analogy to electrical theory where electrical
resistances are the ratio of voltage drop and current, there exists a positive

thermodynamic resistance R̃ with R̃ ¼ Dm=J.0. So, Dm may be interpreted

as the thermodynamic force driving flux J through resistance R̃. Unfortu-
nately, not even for the simplest kinetic laws is the resistance R̃ constant;

instead, it takes a complicated nonlinear form containing polynomial and

logarithmic terms. E.g., the resistance of reaction 1 in Eq. 1 is R̃1 ¼
ðmA;01mB;0 " mAB;01R' T logðcA cB c"1

AB c
"1
S ÞÞ=ðk11 cA cB " k"1 cABÞ. Ob-

serve, that the zero sets of numerator and denominator of R̃1 are equal, since

R̃1.0. Thus the expression contains removable singularities.

The characterization of a reaction kinetic by its resistance R̃ is possible,

but due to its complex form, unpracticable. Hence this representation is
usually only used in its linearized form in the vicinity of thermodynamic

equilibrium. Since biology usually studies systems far from equilibrium,

it is quite unsuited for modeling.

RESULTS

Thermokinetic potentials and capacities

We introduce a different representation of the chemical
potentials mi that is needed later on:

mi ¼ R'T logðjiÞ or ji ¼ expðmi=ðR
'TÞÞ: (11)

We call ji the thermokinetic potential of Xi. Because it is
derived from mi, the thermokinetic potential ji also describes

the potential of a reactive species Xi. A nice property of ji is
that for ideal mixtures (see Eq. 10) it is proportional to ci:

ci ¼ Ciji: (12)

The factor Ci [mol m"3] is the capacity of i. It depends on
the chemical standard potential mi,0:

CiðT; pÞ ¼ cSexpð"mi;0ðT; pÞ=ðR
'TÞÞ: (13)

The Gibbs reaction energies can be written in dependence
on the ji, e.g., for reaction 1 in the example network it is
Dm1 ¼ R* T (log(jA jB) – log(jAB)).
An interpretation of the above-introduced quantitiesCi and

ji can be gained by considering thermodynamic equilibrium
states with meq, jeq, and ceq. A reaction is in thermodynamic
equilibrium, if Dmeq ¼ 0. Thus the condition for thermody-
namic equilibrium of the whole reaction system is in matrix
notation

0 ¼ NTmeq; 0 ¼ NT
logðjeqÞ; 0 ¼ NT

log
ceq
C

! "
; (14)

where the logarithm and the fraction ceq/C have to be under-
stood elementwise.
This means that the capacities determine the equilibrium

constants:

Keq ¼
Y

i2P

Cjnij
i

.Y

i2E

Cjni j
i ¼ k1

k"
: (15)

Forces and resistances

By a redefinition of the thermodynamic force along a reaction,
we can achieve a constant resistance for simple mass-action
kinetics. The key property ofDm that has to be conserved is its
sign distribution in dependence on the concentrations. We
may easily construct a quantity Fwith sign(F)¼ sign(Dm) by
applying the exponential function to both terms in Eq. 9,

F ¼ exp

+
i2E

jnijmi

R'T

0

@

1

A" exp

+
i2P

jnijmi

R'T

0

@

1

A; (16)

and thus arriving at

F ¼
Y

i2E

jjniji "
Y

i2P

jjniji ; (17)

equivalent to

F ¼
Y

i2E

C"jni j
i

Y

i2E

cjniji "
Y

i2P

C"jni j
i

Y

i2P

cjniji ; (18)

which has the form of a mass-action law. E.g., for reaction
1 it is F1 ¼ jAjB " jAB ¼ C"1

A C"1
B cAcB " C"1

ABcAB: We call
F the thermokinetic force along a reaction. The according
resistance R [mol"1 m3 s] is defined by

R ¼ F=J: (19)
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A nice property of R is that it is constant for mass-action
kinetics. A comparison of coefficients of the kinetic rate law
in Eq. 8 and the relation J ¼ R"1 F yields that

R ¼ k"1

1

Y

i2E

C"jni j
i ¼ k"1

"

Y

i2P

C"jni j
i : (20)

Both expressions for R are equivalent, because the capac-
ities Ci implicitly define the equilibrium constants (Eq. 15).
For reaction 1 in the example network it holds that R1 ¼
k"1
11C

"1
A C"1

B ¼ k"1
"1C

"1
AB:

Non-mass-action kinetics

The formalism can easily be extended to non-mass-action
rate laws. Consider the generalized mass-action rate law

J ¼ f ðc; qÞ k1

Y

i2E

cjniji " k"
Y

i2P

cjni ji

 !

; (21)

where f(c, q) is an arbitrary positive function dependent on
concentrations c and further parameters q (13,22). This is a
quite general expression, since all kinetic laws in idealmixtures
can be written in this form. The corresponding resistance is
given by R"1 ¼ k1 f ðc; qÞ

Q
i2E C

jnij
i ¼ k" f ðc; qÞ

Q
i2P C

jnij
i .

This is an arbitrary, positive function of c. Thus for a non-mass-
action kinetic the resistance is no longer constant.
We will demonstrate this for the single reaction X! Y

with a reversible Michaelis-Menten kinetic with enzyme
concentration cE:

J ¼ cEðcX=kX;0 " cY=kY;0Þ
11 cX=kX;1 1 cY=kY;1

: (22)

This is a generalized mass-action kinetic with k1 ¼ 1/kX,0,
k–¼ 1/kY,0, and f(c, q)¼ cE/(11 cX/kx,1 1 cY/kY,1) with q¼
(kX,1, kY,1). With an appropriate scaling one can use the ki,0 as
capacities Ci¼ ki,0. The corresponding resistance is R¼ (11
cX/kX,11 cY/kY,1)/cE orR¼ (11 kX,0/kX,1 jX1 kY,0/kY,1 jY)/
cE. This may be written as R¼ r0 1 rX jX 1 rY jY where ri
are new parameters. Thus for complex kinetics the resistances
are not constant, but are dependent on the concentrations of
educts and products. For typical kinetic laws of catalyzed
reactions the dependency is polynomial or rational.
For modeling reaction networks, irreversible kinetic laws,

with an always-positive reaction flux, are often used. An
example is the Michaelis-Menten kinetic J ¼ Jmax cS/(km 1
cS) where cS is the substrate concentration and Jmax and
km are parameters. Physically, however, there are no such
irreversible reactions because, according to the principle of
microscopic reversibility, the direction of any reaction can be
reversed by providing high product and low educt concen-
trations. Consequently, irreversible kinetic laws cannot be
modeled with the proposed formalism, because they are
thermodynamically infeasible. Reactions appear to be irre-
versible, if the potentials of the educts

Q
i2E j

jnij are always
much larger than those of the products

Q
i2P j

jnij. Thus the

apparent irreversibility of a reaction is a systemic property
and not a property of a single reaction. When gaining for a
physically sound model, the irreversibility should follow
from the complete model equations and not be modeled
explicitly.
Let us review what we gained by defining thermokinetic

potentials ji (Eq. 11) and forces Fj (Eq. 17). Irreversible
thermodynamics uses chemical potentials mi and negative
Gibbs reaction energy Dm for the description of a reaction.
This, however, leads to complex expressions for the resis-
tances R̃. By introducing the thermokinetic force F, we
heavily simplified the resistance R, which is now constant for
mass-action kinetics and polynomial or rational for kinetics of
catalyzed reactions. To fulfill the constraints imposed by
energy conservation the modeler only has to assure that R is
positive. To be able to conveniently express the thermokinetic
force F, we introduced the thermokinetic potentials ji. The
thermokinetic force of a reaction is the difference of two
power law expressions in the ji whose exponents are the
stoichiometric coefficients. Thermokinetic potentials ji and
concentrations ci are proportional, such that a constant
capacity relating both can be defined.

Model equations

With the above definitions we can write a mathematical
model of a reaction system as

_c ¼ N J

Ciji ¼ ci for i ¼ 1 . . . n

RjJj ¼ FjðjÞ for j ¼ 1 . . .m: (23)

By N we denote the stoichiometric matrix and by c and J
the vectors of concentrations and reaction fluxes, respec-
tively. We will illustrate this by writing down the model
equations of our example (Eq. 1). They consist of the mole
balances already formulated in Eq. 3, the relations between
thermokinetic potentials and concentrations

CAjA ¼ cA CABjAB ¼ cAB

CBjB ¼ cB CBCjBC ¼ cBC

CCjC ¼ cCC CABCjABC ¼ cABC (24)

and the kinetic rate equations

R1J1 ¼ jAjB " jAB R2J2 ¼ jABjC " jABC
R3J3 ¼ jBjC " jBC R4J4 ¼ jBCjA " jABC : (25)

An analogy to electrical networks becomes obvious. The
concentrations ci are the chemical counterpart of electrical
charges. They are the integral of the incoming flux and cur-
rent, respectively. The thermokinetic potentials ji are analogs
of the electrical voltages. By the capacities Ci they are linked
to concentrations and charges, respectively. Forces Fj corre-
spond to voltage drops along resistances Rj. However,
whereas electrical forces are always linear in the potentials,
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thermokinetic forces may be nonlinear, since for reactions of
higher order the forces Fj follow a nonlinear mass-action law.
The three parts of Eq. 23 correspond to the basic constraints

that determine the behavior of a reaction network. The first
part models the constraints introduced by mass conservation.
The parameters are collected in the stoichiometricmatrixN. In
the second part the position of thermodynamic equilibrium is
defined by the capacities Ci. Implicitly, for given concentra-
tions this determines the signs of the reaction fluxes consistent
with energy conservation and the second law. The third part
represents the kinetic part: it describes the behavior of the flux
in nonequilibrium. Its parameters are the resistances Rj.

Ordinary differential equations

Above we stated the model equation in the form of a
differential-algebraic equation system in the variables c, j,
and J. For practical reasons it is often advantageous to use a
representation as an ordinary differential equation system.
Simple operations allow the representation of J as a function
of j or c, respectively. Thus it is possible to reduce the
differential-algebraic system to an ordinary differential sys-
tem in j or c, respectively. In the latter case, the only differ-
ence to models of the traditional kinetic modeling formalism
is that the parameters are Ci and Rj and not k6j.

Open systems

Usually kinetic models do not describe closed systems that
actually approach thermodynamic equilibrium. The most com-
mon assumption is that several concentrations or fluxes are
clamped, i.e., are fixed to a specified value. As discussed in the
Introduction, this is often done with ATP, ADP, and P con-
centrations. When clamping these concentrations in an ATP
consuming network, one implicitly assumes the existence of an
attached unmodeled system that rephosphorylates the produced
ADP. In TKM models clamping can be done analogously, by
fixing the respective quantities. The resulting model is thermo-
dynamically feasible, since internal cyclic fluxes are not possi-
ble. However, it does not go to thermodynamic equilibrium,
since a continuous flow through the system occurs.
It is also possible to model parts of the network in the TKM

formalism and parts in the traditional kinetic modeling for-
malism. Then some of the reaction fluxes Jj are not determined
by forces and resistances, but by a traditional concentration-
dependent kinetic rate equation.Thismaybe reasonable inorder
to include subnetworks with partly unknown stoichiometry.

Parameters and their values

Degrees of freedom

Although capacities and resistances are well-defined physical
parameters, their measurement may be difficult. The capac-
ities Ci depend on the chemical potentials of the pure com-
pounds mi,0, but mi,0 cannot easily be determined absolutely.

However, the key property is that the capacities define
equilibrium concentrations and in this way the equilibrium
constants. Any set of equilibrium concentrations ci,eq of the
network may serve as capacities Ci ¼ ci,eq and still the
condition sign F ¼ sign J is fulfilled (see Eq. 18) and thus
positive resistances Rj exist. The different possible choices of
the parameters change the scaling of the thermokinetic
potentials ji and the forces Fj, but leave the concentrations
ci and fluxes Ji invariant.
One may ask the question: How many degrees of freedom

exist for the choiceof the capacities?For given initial conditions,
thermodynamic equilibrium is unique and two initial conditions
lead to the same equilibrium state, if stoichiometrically possible.
Thus the number of independent conservation relations dn that
restrict the stoichiometric abilities of the network (e.g., cA1 cAB
1 cABC ¼ const) is equal to the number of degrees of freedom
for the choice of capacities and resistances. To formalize this we
reformulate the equilibriumcondition inEq. 14.Thevector ceq is
a vector of equilibriumconcentrations and thus canbeused as an
alternative capacity vector, if

NT
logðceqÞ ¼ NT

logðCÞ: (26)

These are rank(N) conditions for n concentrations ci and
thus there are dn ¼ n – rank(N) degrees of freedom to choose
new capacities ceq.
After determining the capacities Ci the resistances Rj can

be identified from dynamic measurement data or from a
comparison of coefficients with a known kinetic law.

Example

To illustrate the determination of capacities and resistances we
will compute them for the example network in Eq. 1 using the
parameters given in Kholodenko et al. (19) for the complex-
ation of phosphorylated Shc (A), Grb2 (B), and Sos (C):

k11 ¼ 3:03 10
16

M
"1
s
"1 k"1 ¼ 1:03 10

"1
s
"1

k12 ¼ 3:03 1017 M"1s"1 k"2 ¼ 6:43 10"2s"1

k13 ¼ 1:03 10
15

M
"1
s
"1 k"3 ¼ 1:53 10

"3
s
"1

k14 ¼ 2:13 10
17

M
"1
s
"1 k"4 ¼ 1:03 10

"1
s
"1 : (27)

First we determine equilibrium concentrations for A, B, C,
AB, BC, and ABC to use them as capacities. Observe that for
this we have three degrees of freedom, because the system
contains three conservation relations (dn ¼ 3), one for each
conserved moiety A, B, and C, respectively. For determining
the capacities we can freely choose their total concentrations.
To arrive at meaningful values we use the total concentra-
tions given in Kholodenko et al. (19) for the total concen-
trations of Shc, Grb2, and Sos:

cA 1cAB 1cABC ¼ 1503 10
"9
M

cB 1cAB 1cBC 1cABC ¼ 853 10
"9
M

cC 1cBC 1cABC ¼ 343 10
"9
M

:

(28)
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With the above values we compute the steady state _ci ¼ 0.
Up to rounding errors this is an equilibrium state with J1 ¼
J2 ¼ J3 ¼ J4 ¼ 0, because the detailed balance relations are
fulfilled. The equilibrium concentrations can be used as
capacities:

CA & 82:03 10
"9
M CAB & 37:53 10

"9
M

CB & 15:23 10
"9
M CBC & 1:773 10

"9
M

CC & 1:743 10
"9
M CABC & 30:53 10

"9
M : (29)

Using Eq. 24 we now can determine the resistances Rj by a
comparison of coefficients of Eq. 25 and Eq. 4:

R1 ¼ k"1

1 1C
"1

A C"1

B ¼ k"1

"1C
"1

AB ¼ 2:73 10
8
M

"1
s

R2 ¼ k"1

1 2C
"1

ABC
"1

C ¼ k"1

"2C
"1

ABC ¼ 5:13 10
8
M

"1
s

R3 ¼ k"1

1 3C
"1

B C"1

C ¼ k"1

"3C
"1

BC ¼ 3:83 10
11
M

"1
s

R4 ¼ k"1

1 4C
"1

BCC
"1

A ¼ k"1

"4C
"1

ABC ¼ 3:33 10
8
M

"1
s : (30)

Observe that the two alternatives for calculating the resis-
tances Rj in the above equation are only equivalent, since the
capacities Ci define a thermodynamic equilibrium. The kinetic
parameters k6j of a model violating detailed balance cannot be
converted into capacities Ci and resistances Rj.
A closer look at the above-computed capacities and resis-

tances reveals large differences of their values. The low value
of CBC means that an accumulation of BC is thermodynam-
ically unfavorable, because a high concentration leads to very
high jBC. This strongly activates BC-consuming reactions.
The high value of R3 indicates that additionally the formation
of BC is kinetically unfavorable. This suggests that the com-

plexation usually proceeds in the order A1B1C/
AB1C/ABC. Similar considerations can be made on the
basis of the parameters k1j and k–j. There, however, the split
into thermodynamic and kinetic reasoning is difficult. The
above considerations are confirmed by a numerical simulation
(Fig. 1): Because of our choice of the capacities as the equi-
librium state that is actually approached, all thermokinetic
potentials ji approach 1. Concentration cBC is very low, but
its thermokinetic potential jBC is comparable to the thermo-
kinetic potential jAB. Force F3 is quite high, but J3 is very
small.
In general a comparison of capacities and resistances of

different reactions and compoundsmaybemisleading, because
there is some freedom in choosing these parameters. However,
if the capacities are chosen to be the actually approached
equilibrium concentrations, a direct comparison is possible. In
case of open systems with in- and outflows that do not reach
equilibrium, one can choose an equilibrium state that would be
approached if the system would be closed in a certain typical
state.

Parameter numbers

Let us compare the number of parameters of the traditional
and the new TKM formalism. The example-model requires
eight parameters in the traditional formalism (two for each
reaction), but 10 in the TKM formalism (six capacities1 four
resistances). The eight parameters in the traditional formalism
are constrained by one detailed balance equation. That is,

FIGURE 1 Simulation results for the

example network.
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there are seven independent parameters. To choose the 10
parameters of the TKM formalism we have three degrees of
freedom. Thus there are effectively seven independent param-
eters. To compare the parameter numbers in general (see
Table 1), we consider a network consisting of n compounds
and m reactions with mass-action type kinetics. The left and
the right null space of N have dimensions dn ¼ n – rank(N)
and dm ¼ m – rank(N), respectively. This means there are dn
conservation relations and dm independent cycles. The
usually applied formalism requires 2 m formal parameters,
one for each forward k1j and backward k–j reaction. These
parameters are partly related to each other by dm detailed bal-
ance relations. Thus there are 2 m – dm ¼ m1 rank(N) inde-
pendent parameters.Our formalism requiresm1 n parameters.
Every compound has a capacity Ci and every reaction has a
resistance Rj. Since usually—in contrast to the example—the
number of reactions m exceeds the number of compounds n,
m 1 n is normally ,2 m. Additionally every conservation
relation adds an degree of freedom to the choice of param-
eters. Thus the number of independent parameters for a net-
work consisting of mass-action type reactions is here, de facto,
equal to m 1 n – dn ¼ m1 rank(N).
Neither in the traditional nor in the TKM formalism does

the number of formal parameters (2 m, m 1 n) match the de
facto number of independent parameters m 1 rank(N). But
whereas the parameters of the traditional formalism are con-
strained by detailed balance relations, the parameters of the
TKM formalism can be adjusted independently from each
other. However, the parameters cannot be determined uniquely
on the basis of measurements of concentrations and fluxes, but
a given system can be described by several different pa-

rameter sets. This freedom can be used constructively by
choosing typical equilibrium concentrations as capacities. In
this way capacities and resistances of different compounds
and reactions become comparable.

Merging models

The nonuniqueness of the parameters has to be observed,
when merging two TKM models into a single model. The
parametersCi and Rj of the two models can only be combined
directly, if the capacities refer to a compatible equilibrium
state. Otherwise the parameters have to be converted accord-
ingly (see Table 1). A simpler way to merge two models is to
first convert the Ci and Rj to the rate parameters k6j. Observe,
that the k6j are not constant, if Rj correspond to a non-mass-
action kinetic. Then the k6j of the two models can be merged
without problems. The resultingmodel can be converted back
to the TKM formalism. Necessary conversion laws are listed
in Table 1.

Comparison to Yang et al. (17)

In Yang et al. (17) a method for imposing detailed balance
in complex reaction networks is introduced. Considering
Markov models of single molecule dynamics and a formal
representation of general mass action kinetics, they arrive at
an elegant formulation of the detailed balance relations and
use those to suggest an alternative parameterization for ki-
netic models. They suggest parameterizing kinetic models by
the equilibrium concentrations ceq,i and the unidirectional

equilibrium rates J6eq;j ¼ k1
Q

i2E c
jnij
eq;i ¼ k"

Q
i2P c

jnij
eq;i. Here,

TABLE 1 Comparison of variables and parameters of mass-action networks

Formalism

Traditional TKM

Model variables

n compounds ci ci, ji
m reactions Jj Jj, Fj

Model parameters

Number dtrad ¼ 2 m dTKM ¼ m 1 n
Compounds — Ci . 0

Reactions k1j, k–j . 0 Rj . 0

Detailed balance relations
Number dm ¼ m – rank(N) 0

Equations BT logðk1k"Þ ¼ 0 (with N B ¼ 0) —

Degrees of freedom in choice of parameter values
Number 0 dn ¼ n – rank(N)
Equation — NT log(C9) ¼ NT log(C$) (with C9,

C$ alternative capacity vectors)

De facto number of parameters
d ¼ dtrad – dm d ¼ dTKM – dn
d ¼ m 1 rank(N) d ¼ m 1 rank(N)

Parameter conversion
k1j ¼ R"1

j

Q
i2Ej

C
"jnij j
i NT log(C) ¼ log(k1/k–)

k"j ¼ R"1
j

Q
i2Pj C

"jnij j
i Rj ¼ k"1

1j

Q
i2Ej

C
"jnij j
i ¼ k"1

"j

Q
i2Pj C

"jnij j
i
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motivated from the formalismof irreversible thermodynamics
and its notion of potentials and forces, we arrive at a param-
eterization with capacities Ci ¼ ceq,i and resistances Rj ¼
1=J6eq;j (see Eq. 20). Our approach provides an intuitive,
thermodynamic interpretation of these parameters. We dis-
cuss their relation to thermodynamic potentials and forces.
The use of thermokinetic potentials ji and forces Fj provides a
physically sound but intuitive way for the notation of model
equations. The formalism is applicable to non-mass-action
kinetics.

DISCUSSION

In the usual kinetic modeling formalism it is possible to build
models that describe physically infeasible systems, if the
Wegscheider conditions are violated. For every true cycle in
the network, there exists a Wegscheider condition that con-
strains the set of physically feasible kinetic parameters. If the
parameters violate these equations, the model describes a
system that violates detailed balance. In particular, then the
model does not contain a state of thermodynamic equilibrium
where all fluxes vanish. This would correspond to a chemical
perpetuum-mobile that maintains nonequilibrium concentra-
tions and thus is able to perform work without consuming an
equivalent amount of energy-rich substrates. Thus a violation
of the Wegscheider conditions can be interpreted as a viola-
tion of energy conservation.
In the following we first discuss cases where a violation

of detailed balance is critical. Then we review the TKM for-
malism and show how it may be useful in such cases.

Examples of large models

Recently, several large models of biochemical networks
were developed that consider the complete stoichiometry of
the modeled reactions. The behavior of such networks is
constrained by thermodynamics.
In the literature (23,24) an approach for modeling signal

transduction systems is presented that accounts for the whole
combinatorial complexity emerging from the high number
of different possible protein complexes. This approach is
extended in Conzelmann et al. (25) to reduce the number
of necessary model equations. In addition to futile cycles,
networks of protein complexation contain many true cycles
(see Eq. 2) as well, and thus their parameters are subject to
detailed balance relations. This issue is crucial for a correct
parameterization of signal transduction networks.However, it
is not explicitly discussed in the above-mentioned publica-
tions and no strategies are offered to come to a valid
parameterization. We expect that the behavior of signal
transduction networks is constrained by thermodynamics and
that some of their design principles can only be understood
from this viewpoint.
For several large metabolic networks the complete stoichi-

ometry of each reaction is available mainly due to the efforts

of the group around Palsson (Escherichia coli (26), Helico-
bacter pylori (27), Staphylococcus aureus (28), Methano-
sarcina barkeri (29), and Saccharomyces cerevisiae (30)).
These models are mainly used in the context of constraint-
based modeling (31) (e.g., flux balance and elementary mode
analysis). In future they may serve as the basis of kinetic
models. The power of constraint-based modeling shows that
the behavior of metabolic networks is strongly determined by
their stoichiometry and by the constraints of mass and energy
conservation (3). Thus for their kineticmodeling it is essential
to explicitly consider the energy balance constraints.

Modeling, identification, and analysis

Models, as described above, contain many true cycles.
Additionally, their kinetic parameters are often not known
exactly. Thus if no special care is taken, the actual chosen
parameter set very likely violates detailed balance relations
and the model may show a behavior that is physically
impossible. The situation gets more involved, if one considers
parameter variations.
For parameter identification often numerical optimization

methods are used. The model parameters are varied to find
the parameter set that leads to the best fit of model behavior
and measurement data. If detailed balance relations are not
explicitly considered, the optimization method will spend
most of the time examining impossible parameter sets. If
some parameters are not identifiable (e.g., due to noisy or
missing measurement data) the best fit is likely to be attained
at infeasible parameter values. On the other hand if the
detailed balance relations are considered, less measurement
data is necessary to identify the parameters uniquely.
Model analysis often involves sensitivity or robustness

analysis, i.e., the effects of small parameter perturbations are
studied. This is also critical, because one has to take care to
exclude thermodynamically infeasible parameter combina-
tions. Otherwise, impossible parameter variations are con-
sidered and the result is biased.
The goal of systems biology is to gain a holistic

understanding of biological systems. In particular, this means
we must understand how biological systems function under
the unalterable constraints imposed by basic physical laws. It
is desirable that the model equations fulfill these constraints
structurally, i.e., that with any choice of the kinetic param-
eters, the model describes a physically feasible system.
Whereas in traditional kinetic modeling the mole balance
equations structurally account for mass conservation, energy
conservation has to be assured by an appropriate choice of the
kinetic parameters.

TKM formalism

We introduced a novel formalism called thermodynamic-
kinetic modeling (TKM) for building kinetic differential
equation models of reaction networks that structurally
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account for energy conservation. For this purpose the full
stoichiometry of the network has to be known. The formalism
explicitly considers driving forces of reactions. The driving
forces are directed toward thermodynamic equilibrium and
thus toward lowering the Gibbs energy in the system. The
simple condition that flux and force are always directed into
the same direction assures the existence of thermodynamic
equilibrium and thus the observance of energy conservation.
Our method differs from former approaches in the choice of
potentials and forces. Traditionally the chemical potentialsmi

and consequently the negative Gibbs reaction energies Dmj

are used. In Heinrich and Schuster (13) it is discussed that
thermodynamic flow-force relationships of this kind are often
inferior to kinetic rate equations. Kinetic rate equations allow
us to incorporate detailed mechanistic knowledge and thus
give deeper insight. Further, thermodynamic forces Dmj do
not contain the full information that determines the reaction
rates. A force Dm depends only on the reaction quotientQ

i2P c
jnij
i =

Q
i2E c

jnij
i and thus is invariant to variations of

concentrations that do not change the reaction quotient. How-
ever, reactions rates are usually not invariant to such varia-
tions. An example will clarify this: If the concentrations cX
and cY in the reaction X! Y double, the reaction quotient cY/
cX and thus Dm remains equal. However, if we assume mass-
action kinetics the reaction rate J¼ k1 cX– k– cYdoubles. This
scaling information is not present inDm and has to be captured
by the dependence of the resistance R̃ on the concentrations ci.
Thus the use of Dm as a force for reactions far from equi-
librium is unpracticable, since the according resistance—the
quotient of force and flux—is highly nonlinear.
We construct the thermokinetic force F that has the same

sign distribution as Dm, but is proportional to mass-action
reaction rates. Thus the resistance R ¼ F/J of a mass-action
reaction is constant. The dependence of the resistance on
concentrations has to capture only effects that come from a
deviation from ideal mass-action behavior. The thermo-
kinetic force F can be conveniently expressed using thermo-
kinetic potentials ji of educts and products. They are the
ratios of concentrations ci to constant capacities Ci. Any set
of equilibrium concentrations may serve as capacities Ci.
The TKM formalism provides an adequate way to

introduce the thermodynamic concepts of potentials and
forces to kinetic modeling and thus resolves the dilemma
whether to use thermodynamic flux-force relationships or
kinetic rate equations for describing biochemical reaction
networks.
If, as it is the case formost natural reaction networks that the

number of reactions exceeds the number of compounds, then
the TKM formalism will require fewer parameters than the
traditional formalism and thus simplify parameter identifica-
tion and sensitivity analysis (see Table 1). A slight compli-
cation is caused by the nonuniqueness of capacities. Parameter
values cannot be determined uniquely, but different parameter
sets are equivalent with respect to the description of con-
centrations and fluxes. The different choices affect only the

scaling of potentials and forces. In praxis the nonuniqueness is
not an obstacle for using the TKM formalism, because the
different possible choices can be easily converted.

TKM of large metabolic systems

To demonstrate the use of the TKM formalism, we consider a
hypothetical, kinetic model of the metabolism of E. coli K-12
iJR904with stoichiometry as published in Reed et al. (26). The
following computationsweremadewithMathematica (32); for
the code see the SupplementaryMaterial. The network contains
n¼ 762 compounds andm¼ 931metabolic reactions plus one
reaction describing cell growth. The stoichiometric matrixN2
R7623932 has rank(N) ¼ 722. Thus there are dm ¼ 210 in-
dependent cycles in the network, corresponding to 210 inde-
pendent Wegscheider conditions (see Table 1). A closer look
reveals cycles, that contain phosphorylation of ADP, e.g.,

2ADP1GTP!ADK1
AMP1ATP1GTP

!ADK3 ADP1ATP1GDP

!NDPK1 2ADP1GTP; (31)

with guanosine-diphosphate (GDP), guanosine-triphosphate
(GTP), and reaction names as in Reed et al. (26). Detailed
balance in such cycles is critical when studying energy me-
tabolism. To get an overview over all cycles in the network
we compute a kernel matrix B 2 R9323210 with N B ¼ 0
using exact arithmetics. Since the kernel matrix is not unique
and kernel matrices with a lot of zero entries will give
shorter cycles, we bring B to column-reduced echelon form.
Then ;99% of its elements are zero. The 210 columns of B
correspond to 210 independent cycles. This means that 23%
of the equilibrium constants cannot be adjusted freely, but
are determined by Wegscheider conditions. Cycles contain
between 2 and 49 reactions (mean 9.2). A reaction partic-
ipates, on average, in 2.1 cycles (minimum 0, maximum
107). The number of reactions that do not participate in any
cycle is equal to the number of zero rows in B and thus is
independent of the actual choice of B. Only 48% of the reac-
tions do not participate in any cycle. Thismeans that changes in
52% of the equilibrium constants in themodel have side effects
on other equilibrium constants, possibly distributed over
several functional units. This makes it very difficult to assess
the effect of parameter changes during modeling.
Let us assume that the network is modeled by reversible,

generalized mass-action kinetics (see Eq. 21). The number of
parameters in the traditional formalism is dtrad¼ 1864 plus the
parameters describing the deviation from ideal mass-action
behavior. In the TKM formalism we have dTKM ¼ 1694
parameters plus the parameters describing the dependence of
the resistances on the concentrations. The de facto number of
mass-action parameters is d¼ 1654 (see Table 1). This means
that the traditional formalism requires 13% and the TKM
formalism 2.4%moremass-action parameters thanminimally
required. Further 40 capacities can be chosen freely.
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TKM of large signal transduction systems

Let us assume a scaffold protein that binds k different ligands at
k different binding sites. This is a typical motif in many signal-
transducing pathways,where the ligands are signaling proteins,
kinases, or phosphatases. Observe that the example network in
Eq. 1 is of this kind with k ¼ 2. Every binding site may be
occupied or unoccupied. Thus there are 2k possible complexes
of the scaffold protein and the number of all compounds in the
system is n ¼ 2k 1 k. The number of different reactions per
ligand is 2k–1 and thus the number of all reactions ism¼ 2k k/2.
There are dn ¼ k 1 1 conservation relations and thus the
number of cycles is dm¼ (k/2 – 1) 2k1 1 and the number of de
facto parameters isd¼ (k/21 1) 2k – 1 (seeTable 1). InTable 2
cycle numbers and parameter numbers are compared. The
ratio of equilibrium constants that can be determined by
Wegscheider conditions (dm/m) grows with k. Already at k¼ 4
more than half of the equilibrium constants are determined by
the rest. When comparing the minimal number of de facto
mass-action parameters d with the number of mass-action
parameters necessary for a model in the traditional or the TKM
formalism, we get the over-parameterization of the respective
formalisms. At k¼ 1 the traditional formalism has the minimal
number of parameters and the TKM formalism needs twice as
many parameters. But already at k ¼ 3 the use of the TKM
formalism is advantageous in terms of parameter numbers.
The above considerations show that the TKM formalism can

significantly simplify the kinetic modeling of large systems. In
large systems the fulfillment of all Wegscheider conditions is
not trivial. Changes in the model that affect a cycle require
adjustments in model parts that are not directly related to the
original changes. Such changes are parameter variations and
the introduction of additional reactions. Since cycles are
ubiquitous and interwoven, the necessary adjustments may be
nonintuitively and distributed over large parts of the model.
The TKM formalism allows us to adjust all model parameters
independently and thus frees the modeler of an explicit
consideration of a high number of Wegscheider conditions.
Further it requires less formal parameters than the traditional
formalism and allows some capacities to be chosen freely. For
the modeler, this is more convenient than to observe equality
constraints between a higher number of parameters.

TKM and model parameterization

A major feature of the TKM formalism is that—in contrast to
the traditional formalism—the parameters of TKM are natu-

rally associated with compounds and reactions: The capacities
Ci determine the equilibrium of the network. Low capacitiesCi

indicate a high free energy content of the respective compound.
An accumulation of this compound is energetically unfavor-
able.
Capacities are thermodynamic quantities based on the

standard chemical potentials that are organism-independent.
The standard Gibbs energies of formation of many chemical
species are tabulated (33). For biochemical reactions it is of
advantage when working with reactants that are sums of
species (e.g., ATP ¼ ATP4– 1 HATP3– 1 MgATP2–). For
reactants, standard transformed Gibbs energies of formation
can be computed and are tabulated (34). These numbers may
be used as chemical standard potentials of the respective
species or reactants and thus capacities can be directly cal-
culated. Such tables are particularly useful for the modeling
of metabolic networks.
Resistances Rj and capacities Ci determine the behavior in

nonequilibrium. Low resistances Ri indicate that a reaction
proceeds very fast, if its not in equilibrium. Resistances in
metabolic networks depend on the characteristics of the
catalyzing enzymes and thus are organism-dependent.
The only thermodynamic condition on the new parameters

Rj and Ci is their positiveness.

TKM and sensitivity analysis

Consider a sensitivity analysis of the steady-state of the
example network in Eq. 1. Remember, that the steady-state
of the example is thermodynamic equilibrium. The interpre-
tation of the steady-state sensitivity matrices @css/@k and
@Jss/@k is difficult, since variations of the eight parameters
k6j are restricted to a seven-dimensional nonlinear set. In
particular it is not easily visible, that the sensitivity of the
steady-state fluxes Jss is zero. When one explicitly considers
the Wegscheider condition, the variations of a reduced
parameter vector k9 2R7 are studied. The eighth parameter is
determined by the Wegscheider condition. Then @Jss/@k9 ¼
0, but the matrix @css/@k9 is hard to interpret, since a variation
of an element of k9 is not exclusively associated with a
reaction. In the TKM formalism it is @css/@R ¼ 0, reflecting
the fact, that the equilibrium state is independent of the
reaction mechanisms. Further @Jss/@C ¼ 0 and @Jss/@R ¼ 0,
since in thermodynamic equilibrium fluxes vanish. Only the
matrix @css/@C is not a zero matrix, since the equilibrium
composition is determined by the capacities Ci. This example

TABLE 2 Relative cycle and parameter numbers in models of ligand bindings

k 1 2 3 4 5 6 7 8 9 10 N

dm/m 0% 25% 42% 53% 61% 67% 72% 75% 78% 80% 100%

dtrad/d – 1 0% 14% 26% 36% 44% 51% 56% 60% 64% 67% 100%

dTKM/d – 1 100% 43% 21% 11% 5.4% 2.7% 1.4% 0.7% 0.36% 0.18% 0%

Equation: dm/m is the ratio of equilibrium constants that is determined by the Wegscheider condition, dtrad/d – 1 is the over-parameterization of the traditional

formalism and dTKM/d – 1 is the over-parameterization of the TKM formalism.
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shows that a correct interpretation of sensitivities with re-
spect to mass-action parameters k6j may be difficult. Vari-
ations of capacities Ci and resistances Rj provide a natural
way to study the sensitivity of reaction networks.
In systems biology one faces the problem of mathematical

modeling of large reaction networks. Often their structure
expressed by the stoichiometric matrix is completely known,
but initially only insufficient information on kinetic parameters
is available. In such cases kinetic modeling and model analysis
is complicated by the need to observe detailed balance rela-
tions. By using thermokinetic potentials and forces the TKM
formalism structurally avoids violation of detailed balance.
Additionally, fewer parameters are required. Thus it supports
the modeler in building physically sound models.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting
BJ Online at http://www.biophysj.org.
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